IONIZATION RATE CONSTANT AT HIGH TEMPERATURES
AND SMALL ELECTRON CONCENTRATIONS
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We will calculate the rate constant for thermal ionization of a monatomic gas by electrons, taking in-
to account the nonuniformity of the electron-energy distribution function. The formulation of the problem is
the same as in our previous study, the only difference being that we will consider the case of small electron
concentrations [1]. We have in mind electron concentrations such that the rate at which a Maxwell distribu-
tion is established for the electron gas at electron energies of the order of the ionization potential I is gov-
erned by electron—atom rather than electron—electron collisions, At this electron concentration, ¢ =
ng/ng (where ng and n, are the numbers of electrons and atoms per unit volume}, the condition
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should be satisfied.

Here m and M are the masses of the electron and atom, o, () and o ee(l) are the cross sections of
elastic scattering of electrons at atoms and electrons for an energy I, and Q is the coulombic logarithm,

The ionization rate constant is calculated as a function of the atomic temperature. The rate constant
differs substantially from its equilibrium value over a broad temperature range as a result of the loss of
electron energy in ionization.

1. Formulation of Problem. We will consider a gas with a constant heavy-particle (atom and ion)
temperature T far from ionization equilibrium, so that recombination processes can be neglected. We will
assume the temperature to be so high (T > I1/20) that the ionization rate is determined by the rate of the
transition to the first excited atomic state., This problem was considered in detail earlier [1].

We find the electron distribution function f(t, £) by solving the kinetic equation

f.:lee"}'[ea_f"‘fei_"fi (1-1)

where the symbols I4q, Ig,, and I,; represent the integrals for collisions of electrons with electrons, atoms,
and ions, respectively. The last term on the right side of Eq. (1.1) takes into account the ionization.

The first three collision integrals in Eq. (1.1) have the order of magnitude Af/7 , where Af is the
deviation of the distribution function from the equilibrium value and 7 is the energy relaxation time for the
corresponding collision process. An estimate of this time is

T~ T2 ] < 3(AE) ) 0>

where ( 8(AE)?/at) is the mean-square energy loss per unit time for the energy-exchange process in ques-
tion, For electron—electron collisions, this quantity is proportional to £ ~1/y; for elastic electron—atom
collisions, it is proportional to ¢ %2, so that

Tee ~ €', Toq ~ & (1.2)
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ie., the efficiency of electron—electron collisions decreases with increasing energy, while that of electron—
atom collisions increases rapidly.

Taking inequality (1) into account, electron—electron collisions at large electron energies € > E; (E,
is the energy of the first atomic excited state, reckoned from the ground level) can be neglected in com-
parison with elastic electron—atom collisions. Naturally, both types of collisions are effective when & « E4
and should be taken into consideration. Equation (1) is equivalent to the inequality

Tee 5> Teay & > By 1.3)

At small energies, the inequality

Toe K Tear >0 (1.4)
is satisfied by virtue of Eq, (1.2).

For the electron—ion relaxation time 7;, we have the inequalities

Tei > Tear Tei >> Tee (1.5)

which are valid for all energy regions, since n; = ng < ng in accordance with Eq. (1) (nj is the number of
ions per unit volume), and the ion mass is M /m times the electron mass,

Inequalities (1.3) and (1.5) permit considerable simplification of the initial kinetic equation. At large
energies ¢ > E;, we can neglect the collision integrals Iy and Igj . The remaining collision integral I,
can be represented in the form of a differential relationship of the Fokker —Planck type, expanding the elec-
tron distribution function under the integral (for the energy transferred during collision) and assuming that
the atoms have a Maxwell distribution with temperature T. As a result, Eq. (1.1) for the energy region
€ > E; takes the form
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Here ¢(¢) is the level density, and o ;(€) is the cross section for transition of an atom from the
ground level to the first level. This cross section can be approximately represented by the linear energy
function

oi(e) = ab(e — Ey) (e — Ey) ] E,

Here 6(x) is a Heavyside function. The constant o depends on the specific type of atom. For most
elements, ¢ ~ 10716 cm?, Assuming the cross section of elastic electron scattering by the atoms Opq to be
independent of energy, we find that the mean-square energy loss per unit time is

(D (AE,,)%/ 8ty = 2-Mim'25 4,0, TE?

We now introduce a distribution function normalized for a single electron, f =ngf,. The left side of
Eq. (1.1) can be represented in the form

fin, + Kn.n.f, 1.7

Here K is the ionization rate constant, defined by the integral

30. s; (8) (%ns')]h
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In order to calculate the distribution function f; at temperatures considerably below the ionization
potential, it is sufficient to find the steady-state solution to the kinetic equation f] = 0 (the so-called quasi-
steady-state approximation [1]).

Because of the smallness of the jonization rate constant, which depends exponentially on temperature,
the second term in Eq, (1.7) can be omitted. It exceeds the last term in Eq. (1.6), which takes account of
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the ionization, only over a very narrow energy range near the excitation threshold for the first level. How-
ever, this very narrow energy interval SE has no effect on the trend of the solution.* Eventually, the
kinetic equation for energies ¢ > E; is written in the form
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The injtial equation [Eq. (1.1)] can also be greatly simplified in the energy region € < E;. There are
no nonelastic collision processes in this region and I; = 0. [With the high temperatures and small electron
concertrations under consideration in Eq. (1), transitions from the first excited level to higher levels and
in the continuous~spectrum region take place primarily by collisions between heavy particles.]

Inequality (1.5) enables us to neglect collisions between electrons and ions. By virtue of Egs. (1.3)
and (1.4), neither of the remaining collision integrals, Iog and I, , can be neglected in the energy region
¢ < E;. The expression for the collision integral Ieq in Eq. (1.9) is also applicable to low energies. The
collision integral Ige can also be reduced to a differential expression of the Fokker —Planck type, using the
electron-flux expression obtained by Landau [2]

Gy =821 0) 08 — ) L2 P gy 1.10

Here uj = v§ —vy' is the relative velocity vector and 6ik is the unit tensor,

In view of the fact that, as a result of the strong energy exchange between the electrons and atoms
[Eq. 1)] and by virtue of Eq, (1.4), the electron distribution function f(g) at low energies € £ T differs
little from the equilibrium distribution function, which is a Maxwellian with the temperature T, we can rep-
resent Eq. (1.10) in the form

J(e) = — 8n%'Qn.m2T(df | de 1] 1)S(e ] T) (1.11)

where
el T
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[

Here J () is the electron flux in the energy space. The value of S differs little from one at energies
e > T and tends to zero at low energies. However, the main role at such energies is played by collisions
leading to large-angle scattering. Such collisions are neglected in the derivation of Eq. (1.11). Their pre-
cise evaluation is a complex problem, but the low-energy region is not important for our purposes, as will
be seen from the discussion below. We can therefore replace the function S(e /T) in Eq, (1.11) by one with
good accuracy, so that the collision integral Iy has the final form

q_)_i@_(%_l:Snze;aneT ('g—i‘i‘ _;_)]

For the quasisteady-state case in the energy region &€ < E,, taking all the foregoing into account,
kinetic equation (1,1) has the form

1 d 811234QneT 16.ﬂideanaTaz dh fl
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2. Solution of Kinetic Equation. We will seek solutions to Egs. (1.9) and (1.12) and combine them and
their first derivatives at an energy £ = E;. We introduce the dimensionless quantities x = € /T and g =
E,/T. Using this notation, Eq. (1.9) is rewritten as

B @+ (142 i @+ 2220 @ =0
a = Mo | 2moe.p, a>1

2.1)

*It can be demonstrated that 6E/T ~ VE;/T exp (E,/T).
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Equation (2.1) reduces to a Whittaker equation. The solution vanishing at infinity has the form
Bz texp (—z)2) Wy, (x V1 + 40) (p=Q0+0oB) VIitia) (2.2)

Here Wy, y/21s a type II Whittaker function and B is the normalization constant. When the influence of
ionization is negIected Eq. (2.2) becomes a Maxwellian. For this purpose, it is necessary to set the param-
eter o equal to zero.

Let us now find the distribution function in the energy region ¢ < E;. We are seeking a solution in the
form

file) = (m ] 2aT)’(1 + g(e))exp (— &/T) 2.3)
with the boundary conditions
g0) =0, g(E,) = const =0

Substituting Eq. (2.3) into Eq. (1.12), we obtain
d nQetcm 1z
gl oo (— )5 =0 (w=(FE0))

The integral of this equation, taking into account the boundary conditions, has the form

‘€

g(e) = —Cy §(eo? +e?)texp 2 de
0

The continuity condition for the distribution function and its first derivative at the point ¢ = E, yields
the following expressions for the constants B and C;:

B = (m.] 2nT)he F'[OF — F | T) — FO]
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We introduce the notation
Fe) = (e +- 2%t exp3-da (2.5)
[]
@ (e) = Te™ exp (— &/ 2T) W, (T V1 + 4or) (2.6)

The derivatives and functions in Egs. (2.5) and (2.6) are taken for the point ¢ = E; in Eq. (2.4). It fol-
lows from the form of Eq. (2.5) that the value -of the function F(e) at high energies € > T and specifically
at ¢ = E; is governed principally by the magnitude of the expression under the integral in the vicinity of the
upper limit of integration. In this region, the function S(e /T), defined by Eq. (1.11), equals one for all
practical purposes.,

The function F(¢) can be calculated with any desired degree of accuracy by integrating Fq. (2.5) by
parts. Using this method, we obtain

F(Ey) = (e* + E)'TeP [1 + 2E,T (20* + E4*)™ 4 0 (B79)] (2.7)

The derivative ®'(E,) is calculated with the Whittaker~function asymptotic [3]

r 4 —appT
W ()= 1%:’)( 6) exp [p(lop —1)] [ g‘:ﬁ(ym),i +0 (w—yé”—))J 2.8)

which is valid when

y~ 4p, y — 4p = ol(y /] 6)*]

The first condition is always satisfied in the case under consideration, while the second leads to the
inequality
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which imposes an unimportant limitation on the lower end of the temperature region with which we are deal-
ing.
We use Egs. (2.7) and (2.8) to find the constants B and C,

B=(gag) bt (Wo GV T8 [+ B (F)" + o]

(2.9)
C,=F(E)™? {1_[ 1, T6k (Eg)-/; . O(B-l)]“}

Vs

It can be seen from the latter expression that the influence of ionization on the distribution function
becomes quite substantial for small concentrations, this influence being noticeable at energies € < E;. This
phenomenon makes it necessary to reduce the normalization factor B by the factor in brackets in Eq. (2.9),
which can be neglected at large concentrations [1].

3. Calculation of Ionization Rate Constant, The ionization rate constant in Eq. (1.8) is most easily
calculated with the aid of Eq. (1.9), which must be multiplied by ¢(&) and integrated from E; to «. This
yields

K= — 1655, T E? (dﬁ f

mM de + —T—)

=,

Substituting in the distribution-function expressions in Egs. (2.2) and (2.4), we obtain

K=— 86eali? Vim ¢ P F (D' +®/T)
a VisM VT —FO'+®F —F|T)

Using Egs. (2.9) and (2.10), we find the final expression for the ionization rate constant

- S [ T

It is of interest to compare this result with that obtained when the influence of ionization on the dis-~
tribution function is neglected. Designating the corresponding ionization rate constant as K;, we find for the

ratio K/K;
b 1= (5T 2R

Equation (3.1) is essentially an expansion of K/K, for the small parameters go™! and g™, The last
three terms are only small corrections in the temperature region under consideration. The principal term
in the expansion of K/K, for these parameters is therefore

B 102 gope (3.2)

where A is the atomic weight of the gas in question. The value of Eq. (3.2) over the temperature region
under consideration (8 < 20E,/I) is considerably less than one for all gases.
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