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We will calculate the rate constant for thermal  ionization of a monatomic gas by e lect rons ,  taking in- 
to account the nonuniformity of the e lec t ron-energy  distribution function. The formulat ion of the problem is 
the same as in our previous study, the only difference being that we will consider  the case of small  e lectron 
concentrat ions [1]. We have in mind electron concentrat ions such that the rate at which a Maxwell d is t r ibu-  
tion is established for the e lec t ron gas at e lectron energies  of the order  of the ionization potential I is gov- 
erned by e l e c t r o n - a t o m  ra ther  than e l e c t r o n - e l e c t r o n  coll isions.  At this e lectron concentration,  c = 
n e / n a  (where n e and n a are  the numbers  of e lect rons  and atoms per  unit volume), the condition 

m Zea(I) ( %e (I) .~Q) (1) 
c <~ M <~ee (I) r (I) 

should be sat isf ied.  

Here m and M are the m a s s e s  of the e lec t ron and atom, aea (I) and ~ee(I) are the c ros s  sections of 
elastic scat ter ing of electrons at atoms and e lect rons  for an energy I, and Q is the coulombic logari thm. 

The ionization rate constant is calculated as a function of the atomic tempera ture .  The rate constant 
differs substantial ly f rom its equil ibrium value over  a broad tempera tu re  range as a resul t  of the loss of 
e lect ron energy in ionization. 

1. Formulat ion of P rob lem.  We will consider  a gas with a constant heavy-par t ic le  (atom and ion) 
t empera tu re  T far  f rom ionization equilibrium, so that recombination p rocesses  can be neglected. We will 
assume the tempera ture  to be so high (T > 1/20) that the ionization rate is determined by the rate of the 
t ransi t ion to the f i rs t  excited atomic state.  This problem was considered in detail ea r l i e r  [1]. 

We find the e lectron distribution function f ( t ,  ~) by solving the kinetic equation 

(1.1) 

where the symbols Iee, Iea , and Iei represent  the integrals  for coll isions of e lectrons with e lect rons ,  atoms, 
and ions, respect ively .  The last  t e r m  on the right side of Eq. (1.1) takes into account the ionization. 

The f i rs t  three collision integrals in Eq. (1.1) have the order  of magnitude A f i T  , where A f  is the 
deviation of the distribution function f rom the equilibrium value and ~- is the energy relaxation t ime for the 
corresponding collision p rocess .  An est imate  of this t ime is 

T - -  r ~ / < 0 (6E)~  / Ot> 

where < 5(AE)2/Dt) is the mean-square  energy loss per  unit t ime for the energy-exchange process  in ques- 
tion, For  e l e c t r o n - e l e c t r o n  collisions, this quantity is proportional to e-t/2; for elast ic  e l e c t r o n - a t o m  
collisions,  it is proport ional  to e 3/2, so that 

%e ~ sv., %, ~ a-'l, (1.2) 
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i .e. ,  the efficiency of e l e c t r o n - e l e c t r o n  collisions decreases  with increasing energy,  while that of e l e c t r o n -  
atom collisions increases  rapidly.  

Taking inequality (17 into account, e l e c t r o n - e l e c t r o n  collisions at large e lectron energies e > E 1 (E 1 
i s  the energy of the f i rs t  atomic excited state,  reckoned f rom the ground level) can be neglected in com-  
par ison with elast ic e l e c t r o n - a t o m  coll isions.  Naturally, both types of collisions are effective when E << E l 
and should be taken into consideration.  Equation (1) is equivalent to the inequality 

�9 o~ >> ~a, e > E ,  (1,3) 

At small  energies ,  the inequality 

is sat isfied by virtue of Eq. (1.2). 

For  the e l e c t r o n - i o n  relaxation t ime Tei , we have the inequalities 

(1.4) 

�9 ,i >> ~, ,  ~ >> v~ (1.57 

which are valid for all energy regions,  since n i = n e << n a in accordance with Eq. (1) (n i is the number of 
ions per  unit volume), and the ion mass  is M / m  times the e lectron mass .  

Inequalities (1.3) and (1.5) permi t  considerable simplification of the initial kinetic equation. At large 
energies  ~ > El, we can neglect the coll ision integrals Iee and I e i .  The remaining collision integral Iea 
can be represented  in the fo rm of a differential relationship of the F o k k e r - P l a n c k  type, expanding the e l ec -  
t ron distr ibution function under  the integral  (for the energy t r ans fe r r ed  during collision) and assuming that 
the atoms have a Maxwell distribution with tempera ture  T. As a result ,  Eq. (1.17 for  the energy region 

> E 1 takes the form 

r = 4nm-V,(2e)V, 

Here ~0(e) is the level density,  and cri(e) is the c ross  section for  t ransi t ion of an atom from the 
ground level to the f i rs t  level. This c ross  section can be approximately represented  by the l inear energy 
function 

z~(~) = zo(8 - El) (~ - E~) } E~ 

Here 0(x) is a Heavyside function. The constant cr depends on the specific type of atom. For  most  
elements ,  cr ~ 1 0  -16 c m  2. Assuming the c r o s s  section of elast ic e lectron scat ter ing by the atoms Crea to be 
independent of energy,  we find that the mean-square  energy  loss  per  unit t ime is 

<0 (AE~) ~ / ~t> = 2~',M-11~'l,~n~Ts '/, 

We now introduce a distr ibution function normal ized for a single electron,  f = n e f  1. The left side of 
Eq. (1.17 can be represented  in the form 

h'ne -f- Knenah (1.7) 

Here K is the ionization ra te  constant, defined by the integral  

/ 2s ~,/, 

In o rde r  to calculate the distribution function f l  at t empera tures  considerably below the ionization 
potential, it is sufficient to find the s teady-s ta te  solution to the kinetic equation f~ = 0 (the so-ca l led  quasi-  
s teady-s ta te  approximation [117. 

Because of the smal lness  of the ionization rate constant, which depends exponentially on tempera ture ,  
the second t e rm in Eq. (1.7) can be omitted. It exceeds the last  t e rm in Eq. (1.6), which takes account of 
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the ionization, only over  a very  narrow energy range near  the excitation threshold for the f i rs t  level. How- 
ever ,  this very  nar row energy interval 5E has no effect on the t rend of the solution.* Eventually, the 
kinetic equation for energies  e > E 1 is writ ten in the form 

(1.9) 

The initial equation [Eq. (1.1)] can also be great ly  simplified in the energy region e < E I. There  are 
no nonelastic coll ision p rocesses  in this region and I i = 0. [With the high tempera tures  and small  e lect ron 
conce~itrations under considerat ion in Eq. (1), t ransi t ions from the f i rs t  excited level to higher levels and 
in the cont inuous-spectrum region take place p r imar i ly  by collisions between heavy par t ic les  .] 

Inequality (1.5) enables us to neglect collisions between electrons and ions. By virtue of Eqs. (1.3) 
and (1.4), neither of the remaining coll ision integrals ,  Ice and Iea ,  can be neglected in the energy region 

< E 1. The express ion for  the coll ision integral Iea in Eq. (1.9) is also applicable to low energies .  The 
collision integral  Ice can also be reduced to a differential express ion of the F o k k e r - P l a n e k  type, using the 
e lectron-f lux express ion obtained by Landau [2] 

]~ = : ~ e ' Q ~ ( / ~ v ~ ~  ~ , ,  o~----~ ~,~ a~v' (1.10) 

Here u i = v i - v i' is the relat ive velocity vector  and 6ik is the unit tensor .  

In view of the fact that, as a resul t  of the strong energy exchange between the electrons and atoms 
[Eq. (1)] and by virtue of Eq. (1.4), the electron distribution function f ( e )  at low energies ~ ~ T differs 
little f rom the equilibrium distribution function, which is a Maxwellian with the tempera ture  T, we can r ep -  
resent  Eq. (1.10) in the form 

where 

J(e) = - -  8~PQn~m-2T(d]  / de "F ] ] T)S(e / T) 

E1T 
S (e/r)  = 2~-'/' ~ ]/xe-~dx 

0 

(1.11) 

Here j (e) is the e lec t ron  flux in the energy space.  The value of S differs little f rom one at energies  
e > T and tends to zero at low energies .  However, the main role at such energies  is played by coll isions 
leading to la rge-angle  scat ter ing.  Such collisions are neglected in the derivation of Eq. (1.11). Their  p r e -  
c ise  evaluation is a complex problem, but the low-energy region is not important  for our purposes,  as will 
be seen from the discussion below. We can therefore  replace the function S ( e / T )  in Eq. (1.11) by one with 
good accuracy,  so that the collision integral Ice has the final form 

q~(8) a~L m~ kask-  

For  the quasis teady-sta te  case in the energy region ~ < E~, taking all the foregoing into account, 
kinetic equation (1.1) has the form 

(s) d8 

2. Solution of Kinetic Equation. We will seek solutions to Eqs. (1.9) and (1.12) and combine them and 
their  f i rs t  derivat ives at an energy  ~ = E I. We introduce the dimensionless quantities x = e / T  and fl = 
E1/T .  Using this notation, Eq. (1.9) is rewri t ten as 

(2.1) 

*It can be demonstra ted that 6 E / T  ~ ~-ET~-ex p (--El/T). 
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Equation (2 .1) reduces  to a Whit taker  equation. The solution vanishing at infinity has the fo rm 

B x - ~ e x p ( = - x / 2 ) W p , , / , ( x ] / i ~ 4 a )  (p : (t § c ~ t 3 ) / 1 / ~ )  (2.2) 

Here  Wp,I/2 is a type II Whit taker  function and B is the normal iza t ion  constant .  When the influence of 
ionization is neglected,  Eq. (2.2) becomes  a Maxwellian. F o r  this purpose,  it is n e c e s s a r y  to se t  the p a r a m -  
e t e r  ~ equal to ze ro .  

Let  us now find the dis t r ibut ion function in the ene rgy  region ~ < E 1. We are  seeking a solution in the 
fo rm 

with the boundary conditions 

/l(e) = (m / 2nT)'/,(l + g(e))exp ( - -e /T)  

g(0) = 0, g(E1) = const =r 0 

(2.3) 

Substituting Eq. (2.3) into Eq. (1.12), we obtain 

d s 2) exp ( ~  dg / nQe4cm ~V~\ 

The in tegra l  of this equation, taking into account the boundary conditions, has the fo rm 

(8) CI I ( 8~ ~ -i  : - -  ~ - e )  exp-~-de 
0 

The continuity condition for  the dis t r ibut ion function and i ts  f i r s t  der iva t ive  at the point s = E 1 yields 
the following exp res s ions  for  the constants  B and C1: 

B = ( m . / 2 z t r ) V , e - a  F ' [ e D ( F '  - -  F / T) - -  F ( I ) ' ]  -~ 

C 1 = - ( ( 1 ) '  +(1) I T )  [ ( I ) ( F ' - - F / T ) - - F O ' ] - ~  
(2.4) 

We introduce the notation 

F (e)  = i(eo 2 -{- x~) -1 exp T dx ( 2 . 5 )  
0 

(1) (e) = T~ -1 exp ( - -  e ] 2T) Wp,,l, (sT -1 1/1 + 4a) (2.6) 

The de r iva t ives  and functions in Eqs.  (2.5) and (2.6) a r e  taken for  the point ~ = E 1 in Eq. (2.4). It  fo l -  
lows f rom the fo rm of Eq. (2.5) that the value o f  the function F(e)  at high energ ies  c > T and speci f ica l ly  
at c = E 1 is governed pr inc ipal ly  by the magnitude of the express ion  under  the in tegral  in the vicini ty of the 
upper  l imi t  of integrat ion.  In this region,  the function S ( e / T ) ,  defined by Eq. (1.11), equals one for  all 
p rac t ica l  pu rposes .  

The function F(s)  can be calcula ted with any des i r ed  degree  of accuracy  by integrat ing Eq. (2.5) by 
p a r t s .  Using this method,  we obtain 

F (El) = (Co ~ + EI2)-lTe '~ [t + 2E1T (co ~ + El2) -1 + 0 (~-2)] (2.7) 

The der iva t ive  0 '  (El) is calcula ted with the Whit taker-funct ion asymptot ic  [3] 

W,.v, (y)= - ~ - I N -  ) e x p [ p ( l n p - t ) l  t r(5/6) y - 4 p  ~ 0 (2.8) 
2 ]/~(y/3) V' 

which is valid when 

- - 4 p ,  U - - 4 p = ~  

The f i r s t  condition is always sa t i s f ied  in the case  under  considera t ion,  while the second leads to the 
inequali ty 
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\ \ 2 2  M - ~  
which imposes  an unimportant  l imi ta t ion  on the lower  end of the t e m p e r a t u r e  region with which we are  dea l -  
ing. 

We use  Eqs.  (2.7) and (2.8) to find the constants  B and C 1 

-1} 

It  can be seen  f rom the l a t t e r  exp res s ion  that  the influence of ionization on the dis t r ibut ion function 
becomes  quite substant ia l  for  smal l  concentra t ions ,  this influence being noticeable at ene rg ies  e < E 1. This  
phenomenon makes  it  n e c e s s a r y  to reduce  the normal iza t ion  f ac to r  B by the fac tor  in b racke t s  in Eq. (2.9), 
which can be neglected at l a rge  concentra t ions  [1]. 

3. Calculat ion of Ionization Rate Constant .  The ionization r a t e  constant  in Eq. {1.8) is mos t  eas i ly  
calculated with the aid of Eq. (1.9), which mus t  be mult ipl ied by gn(a) and in tegra ted  f rom E1 to ~o. This 
yields  

~g~ ~ ram 

Substituting in the dis t r ibut ion-funct ion expres s ions  in E qs. (2.2) and (2.4), we obtain 

K 8seaEi z ]/'~n e "~ F' (r + (1) / T) 

Using Eqs.  (2.9) and (2.10), we find the final express ion  for  the ionization ra te  constant  

F (~/~) 3a ~/, -I 2EIT ~-~ 

I t  is of in te res t  to compare  this resu l t  with that  obtained when the influence of ionization on the d i s -  
t r ibut ion function is neglected.  Designat ing the cor responding  ionization ra te  constant  as I~ ,  we find for  the 
ra t io  K / K  0 

Equation (3.1) is  e s sen t i a l ly  an expansion of K / K  0 for  the sma l l  p a r a m e t e r s  fl ~ - I  and f1-1. The las t  
t h ree  t e r m s  are  only smal l  co r rec t ions  in the t e m p e r a t u r e  region under  cons idera t ion .  The pr incipal  t e r m  
in the expansion of K / K  0 for  these  p a r a m e t e r s  is the re fo re  

= 1.1. t0 -~ %a A-I~  (3.2) 
ct 

where A is the a tomic weight of the gas in question. The value of Eq. (3.2) ove r  the t e m p e r a t u r e  region 
under  cons idera t ion  (fi < 20E1/I  ) is cons iderably  l e s s  than one for  all gases .  

1 ~  

2. 
3. 
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